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Hippocampal morphological change is one of the main hallmarks of Alzheimer’s disease (AD). However,
whether hippocampal radiomic features are robust as predictors of progression from mild cognitive
impairment (MCI) to AD dementia and whether these features provide any neurobiological foundation
remains unclear. The primary aim of this study was to verify whether hippocampal radiomic features
can serve as robust magnetic resonance imaging (MRI) markers for AD. Multivariate classifier-based
support vector machine (SVM) analysis provided individual-level predictions for distinguishing AD
patients (n = 261) from normal controls (NCs; n = 231) with an accuracy of 88.21% and intersite cross-
validation. Further analyses of a large, independent the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset (n = 1228) reinforced these findings. In MCI groups, a systemic analysis demonstrated that
the identified features were significantly associated with clinical features (e.g., apolipoprotein E (APOE)
genotype, polygenic risk scores, cerebrospinal fluid (CSF) Ab, CSF Tau), and longitudinal changes in cog-
nition ability; more importantly, the radiomic features had a consistently altered pattern with changes in
the MMSE scores over 5 years of follow-up. These comprehensive results suggest that hippocampal radio-
mic features can serve as robust biomarkers for clinical application in AD/MCI, and further provide evi-
dence for predicting whether an MCI subject would convert to AD based on the radiomics of the
stigators
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hippocampus. The results of this study are expected to have a substantial impact on the early diagnosis of
AD/MCI.
� 2020 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Convergence magnetic resonance imaging (MRI)-based
biomarkers that target gray matter atrophy or shape alterations
are the most commonly used measures for early biomarker detec-
tion of Alzheimer’s disease (AD) [1–3]. These markers have been
used to perform classification analyses that distinguish AD patients
from normal controls (NCs) with 80%–90% accuracy that has
reached 95% in several small sample studies [4]. However, due to
the limited sample size, the reproducibility and generalizability
of these results are debatable; nevertheless, this kind of robustness
is the most fundamental property for clinical translation and is
important not only within the scientific community but also for
the general public [5–9].

Hippocampal atrophy, or shape change, is one of the main hall-
marks of AD [10]. However, the volume and/or shape are only
crude proxies for the complex anatomical changes that occur in
AD, and studies of atrophy often ignore the fact that this process
is not uniform across different disease phases [11]. The hippocam-
pus undergoes microstructural changes before severe atrophy, and
pathological changes such as neurofibrillary tangles (NFTs) and
amyloid-b (Ab) are not directly detectable at the current resolution
of clinical MRI [12]. Thus, novel MRI analyses that yield greater
information about subtle changes in the hippocampus would be
a significant contribution.

Radiomics, a method of texture analysis, provides information
about first-, second-, and higher-order morphological features
[13–15]. Texture analysis includes a variety of image analysis tech-
niques that quantify the variations in surface intensity or patterns,
including some that are imperceptible to the human visual system
[16] and is a useful way to extract detailed information from brain
images, increase the precision of diagnosis, and assess disease
prognosis [12,15,17–20]. Generalization is very important for clin-
ical research; robust biomarkers should be stable over different
samples of subjects or populations of subjects [5,7]. Thus, the gen-
eralization of radiomics features as biomarkers for AD should be
explored further.

The apolipoprotein E (APOE) gene is known as a major genetic
risk factor for AD [21]. Polygenic risk scores (PGRSs), comprehen-
sive indicators that combine multiple risk alleles, provide a quan-
titative measure of genetic disease risk [22]. Previous large-scale
genome-wide association studies found an association between
the PGRSs for AD and the structural indices of certain brain regions
[23–25]. During the progression of AD, Ab plaques are considered
to occur in the early stage, while Tau accumulation is considered
to be the main factor underlying later dysfunction [26,27]. How-
ever, it is difficult to assess these risk factors with MRI; further-
more, despite the large number of classification studies, the
association between imaging biomarkers and these neurobiologi-
cal measures is not yet clear [28,29]. A strong association between
imaging biomarkers and clinical information (such as APOE, PGRSs,
Ab and Tau) would be of great importance in the understanding of
AD pathology, which would be implying that imaging biomarkers
play an important role in determining the rate of disease progres-
sion in AD.

The development of valid biomarkers is crucial for optimizing
individualized care in clinical application. Thus, identifying repro-
ducible and generalizable markers is essential for the research
community. In keeping with this goal, the first aim of this study
is to explore whether hippocampal radiomic features with repro-
ducible change patterns can serve as MRI biomarkers of AD using
multisite MRI data (715 subjects from 6 sites). To further assess
the reproducibility and generalization of the findings, an indepen-
dent dataset from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (n = 1228) was included. The second hypothesis is that
these hippocampal radiomic features or classification outputs have
a solid neurobiological basis, thereby showing initial promise as
potential markers of AD traits or prodromal disease states. For this
purpose, we investigated the neurobiological basis of the identified
hippocampal radiomic features by relating these features to other
variables, including APOE, PGRS, CSF Ab, CSF Tau, and the progres-
sion of disease status of MCI subjects. The results confirm that hip-
pocampal radiomic features are robust neuroimaging biomarkers
with a solid neurobiological basis that are useful for diagnosing
AD and predicting the likelihood of progression from MCI; there-
fore, they have translation potential.

2. Materials and methods

2.1. Subjects

This study included 715 subjects (231 NCs, 223 MCI and 261 AD
patients) as in-house data from six different MRI scanners. The
replicated data used in this work were obtained from the ADNI
(www.loni.ucla.edu/ADNI). Of these 1228 subjects (356 NCs, 550
MCI and 322 AD), 708 (182 NCs, 328 MCI and 198 AD) had genetic
information as well as Ab and Tau pathology. Table 1 lists the
demographic and clinical information, and additional details about
the subjects and the image acquisition are provided in the Supple-
mentary material S01.

2.2. Hippocampal segmentation and feature extraction

For each subject, T1 MRI scans were registered to the Montreal
Neurological Institute (MNI) space using affine registration and
resampled to 1 mm � 1 mm � 1 mm. The hippocampus was then
segmented bilaterally using a revised segmentation method with
multi-atlas based local label learning (LLL) (https://www.nitrc.
org/projects/locallabel), an automatic segmentation method that
includes the N3 bias correction for imaging inhomogeneity. The
generalization performance of the segmentation method had been
confirmed by previous studies [30–32]. For each side, we extracted
495 features, including intensity-based features, shape-based fea-
tures and texture-based features, across 8 wavelet-based fre-
quency domains. The definitions and detailed descriptions can be
found in previous publications [20,33] and are listed in the Supple-
mentary material S02.

2.3. Redundancy removal and statistical analysis

Because shape features are the same in different frequency
domains of the wavelet transform, duplicate features were
removed before subsequent analysis. To reduce site effects, we first
tested for group difference at each site and then performed mega-
analytic tests to integrate the multisite results [34]. At each site,
statistical significance was determined using two-sample, two-
sided t-tests for any two groups after the age and gender effects
were regressed out using a linear regression model. We then used
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Table 1
Demographic and genetic characteristics of the target sample.

Groups n Age P Gender (M/F) P MMSE P

PL_S NC 45 68.2 ± 6.9 0.10 22/23 0.82 28.6 ± 1.4 <0.001
MCI 33 70.6 ± 8.2 14/19 26.6 ± 2.6
AD 37 71.8 ± 8.4 16/21 17.5 ± 5.7

PL_G NC 32 70.0 ± 7.0 0.06 20/12 0.06 28.8 ± 1.1 <0.001
MCI 28 75.1 ± 8.3 15/13 27.0 ± 1.8
AD 40 71.6 ± 9.4 14/26 19.3 ± 4.5

HH_Z NC 24 65.5 ± 6.2 0.53 9/15 0.24 28.8 ± 1.2 <0.001
MCI 33 65.4 ± 8.3 10/23 25.9 ± 2.5
AD 36 67.3 ± 8.2 18/18 15.8 ± 5.6

QL_W NC 42 65.5 ± 6.8 0.20 12/30 0.24 28.4 ± 1.8 <0.001
MCI 16 66.1 ± 7.4 8/8 24.8 ± 3.5
AD 63 68.0 ± 7.1 26/37 19.0 ± 3.5

XW_H NC 66 66.5 ± 6.8 0.30 26/40 0.13 28.2 ± 2.2 <0.001
MCI 93 67.8 ± 10.0 47/46 24.2 ± 3.6
AD 47 69.1 ± 8.5 16/31 16.7 ± 6.4

XW_Z NC 22 65.5 ± 8.2 0.06 8/14 0.48 28.3 ± 1.5 <0.001
MCI 20 70.7 ± 8.5 11/9 21.3 ± 5.5
AD 38 65.6 ± 8.0 17/21 9.1 ± 6.6

ADNI NC 356 73.9 ± 5.9 0.01 171/185 0.004 29.1 ± 1.2 <0.001
MCI 550 73.3 ± 7.5 324/226 27.6 ± 1.8
AD 322 74.8 ± 7.4 183/139 23.9 ± 2.4

A chi-squared test was used for the gender comparisons. ANOVA was used for the age and MMSE comparisons. MMSE, Mini-Mental State Examination; XW_H and XW_Z,
Xuanwu Hospital of Capital Medical University; PL_S and PL_G, Chinese PLA General Hospital; QL_W, Qilu Hospital of Shandong University; HH_Z, Tianjin Huanhu Hospital.
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the Liptak-Stouffer z-score method [35] to integrate the results
[36,37]. Briefly, the p-value of each feature at the i-th site was con-
verted to the corresponding Zi score using the following formula:
Zi ¼ U�1ð1� piÞ, where U�1 is the inverse of the standard normal
cumulative density function. Then, a combined z-score for each
feature was obtained using the Liptak-Stouffer formula as follows:

z ¼
Pk

i¼1wiziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1w

2
i

q ; ð1Þ

where wi is the inverse of the variance in zi; which represents a rel-
ative measure of the statistical power compared with the other
datasets. The z-scores were expected to follow a standard normal
distribution under the null hypothesis. Using this method, we calcu-
lated the p-value according to the corresponding z-scores for the
tests of group difference between the NC, MCI and AD groups. The
correlation between the t-score of each feature in the ADNI dataset
and the z-score of each feature in the in-house dataset was com-
puted to verify the reproducibility of the results.

2.4. Classification analysis, validation and generalizability

To assess the multivariate performance of the radiomic features,
we established a support vector machine (SVM) model to classify
the AD patients and NCs. Specifically, for each feature in each cen-
ter, we first introduce a common min-max feature normalization
scheme, a nonlinear SVM with a radial basis function (RBF) kernel
was constructed using LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/
libsvm/), and SVM-recursive feature elimination (SVM-RFE) was
used for feature selection. The classification analysis was evaluated
with the inter and intrasite cross-validation methods [38]. We next
tested the generalizability of the classification with radiomic fea-
tures in the ADNI data. Two additional independent cross-
validation steps were performed: (1) the in-house data were used
as the training set, and the ADNI data were applied as the testing
set (CV3), and (2) conversely, the ADNI data was used as the train-
ing set, and the in-house data was used as the testing set (CV4)
(Table 2, Supplementary material S03–S05). To further explore
the effectiveness of the radiomics features, we also evaluated the
performance of the classification with the XGBoost (https://
github.com/dmlc/xgboost/), LightGBM (https://lightgbm.readthe-
docs.io), and linear discriminant analysis (LDA) with principal
component analysis (PCA) models for feature dimension reduction
with the above four cross-validation loops.

The classification performance was evaluated by means of sev-
eral accuracy metrics (accuracy (ACC), sensitivity (SEN) and speci-
ficity (SPE)) and the areas under the receiver operating
characteristic (ROC) curves (AUCs) [39]. To further verify the clin-
ical relevance of the radiomic-based classification, we also investi-
gated the correlations between the classifier output (decision
score) and the cognitive ability scores of individual subjects in
the test sets.

2.5. Relationship between radiomic features and cognitive ability,
APOE genetics, PGRSs, Ab, Tau, and longitudinal changes in the
cognitive abilities in MCI group

In this study, the conservative features, which were defined as
the overlap of the altered and conserved radiomic features, were
obtained from group mega-analysis and classification analysis
(Fig. 1). Later, we continue to explore the relationship between
the clinical information and the conservative features as well as
the uniformity with longitudinal changes in cognitive ability. To
assess the association between the radiomic features and cognitive
ability, Pearson’s correlation coefficients were calculated between
the features and the MMSE scores in individual subjects, both com-
bining AD and MCI and treating each group separately. We also
perform these correlation analyses in the ADNI and in-house
cohorts to further evaluate the generalizability of the identified
features.

We also evaluated the differences in the identified features
between Ab+ and Ab� in the MCI subgroups (also between Tau+
and Tau� and between APOE e4+ and APOE e4�). Ab and Tau occa-
sionally coexist, which greatly increases the risk for AD [26,40,41].
Thus, we also evaluated the differences in the identified features in
three MCI subgroups (Ab+&Tau+, Ab�&Tau+ or Ab+&Tau�, and
Ab�&Tau�). To explore the relationship between Ab/Tau and the
radiomic features, Pearson’s correlations between the radiomic
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Table 2
Accuracy, sensitivity and specificity of the cross-validation.

Methods Model ACC SEN SPE AUC

CV1 In-house intersite cross-validation SVM 0.88 0.88 0.88 0.95
XGBoost 0.87 0.86 0.87 0.93
LightGBM 0.87 0.85 0.88 0.93
PCA+LDA 0.74 0.84 0.64 0.79

CV2 10 subjects from each center were
randomly selected as the testing
set 1000 times

SVM 0.88 ± 0.04 0.90 ± 0.06 0.87 ± 0.05 0.95 ± 0.02
XGBoost 0.88 ± 0.04 0.88 ± 0.06 0.87 ± 0.06 0.94 ± 0.03
LightGBM 0.87 ± 0.04 0.87 ± 0.06 0.87 ± 0.07 0.94 ± 0.03
PCA+LDA 0.72 ± 0.06 0.72 ± 0.08 0.71 ± 0.07 0.78 ± 0.06

Training set Testing set
CV3 In-house ADNI SVM 0.79 0.87 0.72 0.89

XGBoost 0.76 0.91 0.63 0.89
LightGBM 0.77 0.89 0.66 0.89
PCA+LDA 0.75 0.87 0.61 0.81

CV4 ADNI In-house SVM 0.84 0.76 0.93 0.92
XGBoost 0.82 0.75 0.89 0.89
LightGBM 0.82 0.74 0.90 0.91
PCA+LDA 0.69 0.58 0.78 0.75

For the in-house data, n = 715; for the ADNI data, n = 1228. (Details can be found in Supplementary material S03).
CV, cross-validation; VM, Support Vector Machine; XGBoost, eXtreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine.

Fig. 1. (Color online) Schematic of the data analysis pipeline. (a) Automatic segmentation of the hippocampus in the individual space with the LLL method. (b) Computation of
radiomic features. (c) T-test between NC and AD and mega-analysis to identify differences at the multicenter level. (d) Classification analysis between AD and NC using
intersite and intrasite cross-validation to test the generalizability of the results. (e) Correlation between MMSE and radiomic features (and the decision value of the subject to
the classification plane). (f) Validation of the ADNI dataset for using ADNI as training data with in-house data as testing data as well as using in-house as training data with
ADNI data as testing data to test the generalizability of the results. (g) Relationship between radiomic features and clinical information (e.g., cognitive ability, APOE genetics,
PGRSs, Ab, Tau, and longitudinal changes in the cognitive abilities in MCI).
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features and Ab/Tau were also evaluated in the MCI groups (Sup-
plementary material S06).

To explore the relationship between the radiomic features and
PGRSs, we used 533 subjects with genome-wide single-
nucleotide polymorphisms. For each subject, we used the ‘‘score”
utility in PLINK [42] and recent summary statistics for AD [23] to
compute the polygenic AD risk score. The Spearman’s correlations
between the radiomic features and the PGRSs were also calculated
after accounting for the regression group and race effects (Supple-
mentary material S07).

We also evaluated whether the changes in these hippocampal
radiomic features were associated with changes of MMSE in pro-
gressive MCI (PMCI; n = 168, interscan interval: 33.01 ± 24.57 mo
nths) and stable MCI (SMCI; n = 134, interscan interval: 38.61 ± 29.
22 months) subjects (Supplementary material S08) to assess the
feasibility of using these features to predict disease progression
and to predict whether the MCI subject would progress to AD. To
continue exploring the different patterns of the changes in the
radiomic features of the PMCI and SMCI subjects, 35 PMCI subjects
and 29 SMCI subjects with more than five points of longitudinal
data and a time interval between each visit greater than 1 year
were selected for further analyses of the relationship between
the changes in the MMSE scores and the changes in the identified
radiomic feature (Supplementary material S08–S09).

2.6. Availability of data and materials

Individual hippocampal maps and scripts are available at
https://github.com/YongLiulab, and other information is available
from the corresponding author.
3. Results

3.1. Demographic characteristics and neuropsychological assessment
of the groups

In total, the information from 715 subjects, including 231 NCs,
261 CE patients and 223 MCI patients analyzed on 6 scanners,
was studied as in-house data. The mean ages (ANOVA) and gender
ratios between groups were not significantly different among cen-
ters (all P > 0.05). The cognitive ability scores (MMSE) were signif-
icantly different (P < 0.001), with AD patients having the lowest
scores, the NC groups having the highest scores, and the MCI
groups being in the middle (Table 1). Furthermore, a total of
1228 subjects from the ADNI database were included to validate
and test the generalizability of the radiomics analysis. This dataset
included 356 NCs (age: 73.90 ± 5.87; gender (M/F): 171/185;
MMSE: 29.06 ± 1.16), 550 MCI patients (age: 73.25 ± 7.49; gender
(M/F): 324/226; MMSE: 27.61 ± 1.78) and 322 CE patients (age:
74.78 ± 7.40; gender (M/F): 183/139; MMSE: 23.89 ± 2.43). Of
these 1228 subjects, 708 (182 NCs, 328 MCI patients and 198 CE
patients) had available genetic information and Ab and Tau pathol-
ogy. Detailed information can be found in the Supplementary
material S06.

3.2. Hippocampal radiomic features differ among the AD, MCI and NC
subjects

After redundancy removal, 431 hippocampal features were
used in each hemisphere. Of these 862 features, 310 were signifi-
cantly altered in the AD patients compared to those in the NCs.
In summary, 13 intensity features, 7 shape features and 22 textural
features differed in at least one frequency domain (Supplementary
material S10). In addition, 108 features were significantly different
between the MCI and NC subjects, and 177 features were signifi-
cantly different between the AD and MCI subjects (P < 0.05,
Bonferroni-corrected with n = 862) (Fig. 2a–c). The results showed
that the difference maps were significantly correlated between the
ADNI and in-house databases (all P < 10�114), which validates the
reproducibility of the radiomic features (Fig. 2d–f).

3.3. Classification performance

The intersite cross-validation showed an AUC = 0.95
(ACC = 0.88) with the default parameters (c = 2, g = 1/n, n: number
of features) obtained by the SVM-RFE with 57 selected features
(when selecting 50–250 features, ACC = 0.87 ± 0.01). To evaluate
the accuracy in each pair of sites, we used the same method as
CV1 to validate the robustness of the radiomic features, revealing
a mean ACC higher than 0.84 (Supplementary material S04). With
the intrasite cross-validation, the mean AUC = 0.95 ± 0.02 (Fig. 3a,
b, Table 2).

When using the in-house data as the training data and the ADNI
data as the testing data, we still achieved a higher AUC = 0.84
(ACC = 0.79) (Fig. 3c, Table 2); when selecting 50–250 features,
ACC = 0.78 ± 0.01. Conversely, when using the in-house data as
the testing set, we obtained an AUC = 0.92 (ACC = 0.84) (Fig. 3d,
Table 2); when selecting 50–250 features, ACC = 0.82 ± 0.005.
Moreover, the classifier output in the test data was significantly
negatively correlated with the MMSE score in the AD and MCI
groups (Fig. 3e1, f1) and was also significantly negatively corre-
lated with the MMSE score separately in the AD (red lines in
Fig. 3e2, f2) and MCI groups (blue lines in Fig. 3e2, f2).

Furthermore, the intersite cross-validation yielded an
AUC = 0.93 (ACC = 0.87) with the XGBoost model, an AUC = 0.93
(ACC = 0.87) with the LightGBM model, and an AUC = 0.79
(ACC = 0.74) with the LDA model (Table 2). The intrasite cross-
validation yielded an AUC = 0.94 ± 0.03 (ACC = 0.88 ± 0.04) with
the XGBoost model, an AUC = 0.94 ± 0.03 (ACC = 0.87 ± 0.04) with
the LightGBM model, and AUC = 0.78 ± 0.06 (ACC = 0.72 ± 0.06)
with the LDA model (Table 2). More importantly, when using the
in-house data as the training data and the ADNI data as the testing
data, we achieved an AUC = 0.89 (ACC = 0.76) with the XGBoost
model, an AUC = 0.89 (ACC = 0.77) with the LightGBM model,
and an AUC = 0.81 (ACC = 0.75) with the LDA model. Conversely,
when using the in-house data as the testing set, we obtained an
AUC = 0.89 (ACC = 0.82) with the XGBoost model, an AUC = 0.91
(ACC = 0.82) with the LightGBM model and an AUC = 0.75
(ACC = 0.69) with the LDA model.

3.4. Radiomic features and cognitive ability, APOE genotype, Ab, Tau,
and longitudinal cognitive changes in the MCI subjects

For the intersite cross-validation, we chose features that were
included in the classifier more than two thirds of the time. This
resulted in 47 ‘‘conserved” features for further analysis. Of these
features, the 40 that were significantly different between the AD
and NC groups were defined as conservative features (P < 0.05,
Bonferroni correction n = 47). Of these identified features, 33
showed significant correlations with the MMSE scores in the AD
and MCI groups (P < 0.05) (Fig. 4a). More importantly, almost all
of these results (>95%) were replicated in the ADNI datasets
(Fig. 4c), and the correlation scores for the in-house data were
significantly correlated with those for the ADNI dataset
(P = 4.86 � 10�104).

Of the 33 identified features, 8 were significantly different
between the APOE e4+ subjects (n = 177) and the APOE e4� sub-
jects (n = 151) (P < 0.05) (Fig. 5, Supplementary material S06).
Twenty-one of the 33 features were significantly associated with
the PGRSs after accounting for the regression group and the influ-
ence of race (Fig. 5, Supplementary material S07). For Ab, we
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Fig. 2. (a) Group differences of the used radiomic features between AD and NC. (b) Group differences of the used radiomic features between NC and MCI. (c) Group differences
of the used radiomic features between AD and MCI. For (a–c), each matrix has 18 rows, of which the first 9 rows show the left hippocampus, and the next 9 rows show the
right hippocampus; for each hemisphere, the first row represents the features in the raw space, and the following 8 rows represent the results for different frequency domains
of the wavelet transform (LLL, LLH, LHL, HLL, HHL, LHH, HLH, HHH). The color bar represents �log(P), and P is computed by a mega-analysis of the 6 sites. (d) Correlation
between the in-house statistical scores and the ADNI statistical scores of the used radiomic features in NC and AD. (e) Correlation between the in-house statistical scores and
the ADNI statistical scores of the used radiomic features in NC and MCI. (f) Correlation between the in-house statistical scores and the ADNI statistical scores of the used
radiomic features in AD and MCI.

Fig. 3. (a) The ROC curve for classification between AD and NC with intersite cross-validation. (b) The ROC curve for classification between AD and NC intrasite cross-
validation. (c) The ROC curve for classification using in-house data as training data and ADNI data as test data. (d) The ROC curve for classification using ADNI data as training
data and in-house data as testing data. (e) Correlation of classifier outputs with the MMSE score of the ADNI data (e1, the MCI group and AD group; e2, only in the AD group or
only in the MCI group. (f) Correlation of classifier outputs with the MMSE score for the in-house data (f1, MCI group and AD group; f2, AD group alone (red) or MCI group alone
(blue)).
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Fig. 4. (a) Correlations between the MMSE score and a subset of radiomic features. The values of the color bar reflect�log(P), and the 3 columns are the combined AD and MCI
group, only the MCI group and only the AD group. (b) Scatterplots illustrate several significant correlations, and the small bar plots represent the mean (std) values of the NC
(gray), MCI (blue) and AD (red) groups. (c) Correlation with the MMSE score and the radiomic features for the ADNI data. GLN: gray level nonuniformity, RLN: run length
nonuniformity, LRE: long run emphasis, SRE: short run emphasis, Surf2VolRatio: ratio of surface area to volume, LRHGLE: long run high gray level emphasis. L: left
hippocampus features, R: right hippocampus features. Additional information can be found in the Supplementary materials.
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defined the Ab+ group as Ab < 675 (mean-0.5 � std, n = 86) and the
Ab� group as Ab > 1017 (mean + 0.5 � std, n = 129). Nineteen of
the 33 features were significantly different between the Ab� and
Ab+ subjects, and 20 features showed significant correlations with
the Ab scores in the MCI subjects (n = 328, P < 0.05) (Fig. 5a, Sup-
plementary material S06). For the Tau pathology, Tau+ was defined
as Tau > 349 (n = 88), and Tau�was defined as Tau < 221 (n = 116).
Unsurprisingly, 19 features were significantly different between
the Tau+ subjects and Tau� subjects, and 22 features had a signif-
icant correlation with the Tau scores in the MCI subjects (P < 0.05)
(Fig. 5a, Supplementary material S06). When comparing the sub-
jects who were Ab+&Tau+ (n = 43) to those who were Ab�&Tau�
(n = 52), 21 of the 33 features were significantly different. The sub-
jects who were Ab+/Tau� or Ab�/Tau+ were intermediate between
these two (Fig. 5b, Supplementary material S06).

For the 168 PMCI subjects, 24 features showed significant corre-
lations with the changes in feature scores and the changes in
MMSE (P < 0.05, uncorrected). For the 134 SMCI subjects included,
these features demonstrated significant but weaker correlations
compared with those of the PMCI subjects (P < 0.05, uncorrected)
(Fig. 5a, Supplementary material S08). In addition, AUC improved
from 0.65 to 0.82 by using logistical regression to predict the con-
version of MCI subjects by adding radiomic features one by one
until the AUC did not increase (Figs. 5c and Supplementary mate-
rial S09). For subjects with >5 visits, the changes in the radiomic
features had a highly uniform variation trend with the changes
in the MMSE scores in the PMCI subjects (n = 34) and SMCI subjects
(n = 29) (Figs. 5d and Supplementary material S08).
4. Discussion

In a large-scale analysis of data pooled across sites, we demon-
strated that radiomic features appear to be a robust, reproducible
and generalizable imaging signature of AD using four types of
cross-validations with widely used machine learning techniques.
Moreover, the enrichment analyses of the association between
radiomic features and the genotype, Tau, Ab and longitudinal cog-
nitive variances highlight the solid neurobiological substrates
underlying the progression of AD. This is of great significance for
the early clinical diagnosis or prognostic follow-up in AD.

The development of valid biomarkers is crucial for optimizing
individualized care in AD. The multisite MRI findings of altered
hippocampal radiomic features in AD confirm and extend previous
neuroimaging findings [12,15,20]. Our results show robust and
reproducible AD-related alterations in intensity features, such as
kurtosis, mean, mad, median, entropy and uniformity; these fea-
tures reflect the properties or distribution of gray matter within
the hippocampus in AD patients [12], which may indicate atrophy
or gray matter loss in the hippocampus [43,44]. Interestingly, some
shape features, such as the area, compactness and surface-to-
volume ratio, were also altered in AD/MCI; these findings replicate
those of previous studies [17,45–47], and these phenomena indi-
cate that atrophy of the hippocampus does not occur collaterally
[48,49]. Textural features, such as long run emphasis (LRE), gray
level nonuniformity (GLN), and run length nonuniformity (RLN),
were the most significantly different features between the two
groups. Although pathological features of AD, such as NFTs and



Fig. 5. (a) Negative logarithm of the P-value for either a t-test of the group difference or correlation with radiomic features for the following variables: a1, APOE e4+ group vs.
APOE e4� group in the MCI subjects; a2, correlation with the polygenic risk scores; a3, high Ab (Ab�) vs. low Ab(Ab+) in the MCI subjects; a4, high Tau (Tau+) vs. low Tau
(Tau�) in the MCI subjects; a5: (Ab+&Tau+) vs. (Ab�&Tau�); a6: correlation between the radiomic features and Ab in the MCI subjects, a7: correlation between the radiomic
features and Tau in the MCI subjects; a8: correlation between changes in cognitive ability and changes in features in the PMCI group; a9: correlation between changes in
cognitive ability and changes in features in the SMCI group. (b) Examples of feature distributions in the subgroups Ab+&Tau+, Ab+&Tau� or Ab�&Tau+ and Ab�&Tau�. (c) The
ROC curve for prediction of whether MCI conversion to AD increases from AUC = 0.65 (using age, gender and APOE status) to 0.80 (adding the subset of consistent radiomic
features one by one until the AUC does not increase) using logistical regression (see Supplementary material S09 for detailed information). (d) Trend of MMSE changes and the
changes in the identified features over 5 years in PMCI (red) and SMCI (blue). The x-axis indicates the visit time (1–5) and the y-axis indicates the scaled measure values
((score at visit time)/(score at baseline)). L: left hippocampus features, R: right hippocampus features, PMCI: progressive MCI, SMCI: stable MCI.
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Ab plaques, cannot be detected by MRI, these microstructural
changes might lead to altered textural patterns detectable via tex-
ture analysis [12,50–52]. In support of this, the 27 identified fea-
tures showed significant associations with the positron emission
tomography (PET) amyloid value in the hippocampus (Supplemen-
tary material S11). A subset of radiomic features was also signifi-
cantly associated with high-risk genetic status, Ab and Tau
deposition, and changes in cognitive ability. These results highlight
that the altered radiomic features have a solid neurobiological
basis and confirm that with ‘‘radiomics: images are more than pic-
tures, as they are also data” [14].

Imaging biomarkers are the cornerstone of modern radiology.
Neuroimaging genetics has moved from establishing heritable phe-
notypes to finding genetic markers associated with imaging phe-
notypes. APOE polymorphic alleles are the main genetic
determinants of AD risk [53,54]. As expected, this study shows sig-
nificant radiomic differences between APOE e4+ and APOE e4� in
MCI subjects. Unlike a single gene focus, the PGRS has been pro-
posed to have improved predictive ability and statistical power.
The PGRS of AD has been found to be associated with cognitive
decline and brain imaging measures, highlighting the fact that ele-
vated genetic risk influences traits even among individuals without
dementia [24,25,55–57]. Hence, the association between the PGRS
and radiomic features highlights that hippocampal textures can be
used to predict whether a subject has an accelerated genetic basis
for progressing from MCI to AD. Ab plaques and Tau NFTs are the
hallmark lesions of AD, and the strong association between radio-
mic features and the progression of Ab and/or Tau in the MCI sub-
jects indicates the strong neurobiological substrate of these
features [2,12,17,58]. It is still a significant challenge to evaluate
and predict the progress of MCI [32,59]. A particularly important
finding is that the changes in the pattern of the identified features
was strongly correlated with the changes in the MMSE scores of
the PMCI and SMCI groups over five years. This provide powerful
evidence for using features to follow the progress of high-risk
groups, which has important clinical implications, although there
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is no definite marker to determine this eventual progress at the
present time.

It is very important for the research community to elucidate
reproducible and replicative biomarkers for various diseases.
Translation MRI studies aimed at identifying robust disease
biomarkers require large numbers of samples, which can be diffi-
cult to obtain from a single site [60], and the generalizability of
models to larger multisite datasets is an important step to increas-
ing the statistical power necessary to identify biomarkers in trans-
lational neuroimaging [5,7]. It should be noted that the ADNI
cohort, which has a large sample (more than 1500), was collected
from more than 50 centers [61,62], and the mean sample size is
relatively small (Supplementary material S01). Importantly,
because these results were validated with data from independent
sites, our approach is expected to have greater generalizability to
future datasets compared to a single site study using internal val-
idation methods such as leave-N-out cross-validation [4,38]. To
some degree, better classification might potentially be achieved
via parameter tuning, feature selection/combination, or other
methods, such as deep learning. However, these benefits must be
balanced with the risk of overfitting and reduction of the general-
izability of the classification approach to novel data [39]. More sig-
nificantly, the negative correlation between the classifier’s output
and the MMSE implies that the more severe the disease is, the
easier it is to recognize, which implies a potential bridge between
medical imaging and personalized medicine [63].
5. Limitations and caveats

Despite these advances, this study has several limitations that
should be considered. First, the most obvious advantage of a mul-
tisite study is the large number of subjects with more generalizable
information than a single site. These large pools of data come from
different sites, which inevitably leads to the results being affected
by the inhomogeneity of the subjects. Despite the increasing num-
ber of multisite MRI studies, the problem of site/scanner confounds
has not been entirely addressed, although a recent study provides a
statistical framework to approach this issue by correcting distribu-
tional shifts between datasets [64]. Although the classification
results are encouraging, the accuracy may improve with the use
of a more powerful classification approach, such as deep learning,
with more samples [65]. We should rethink how the normalization
and segmentation methods affect the radiomics measures,
although we have confirmed the test-retest probability of these
measures based on the LLL method [30]. It should be noted that
different subregions (for example, the dentate gyrus, cornu ammo-
nis and subiculum) of the hippocampus are associated with dis-
tinct functions; the present radiomics protocol (especially with
3D wavelet transformation) might not work well for these rela-
tively small regions. Therefore, new measures and the accurate
and reliable automation segmentation of these subfields with high
resolution imaging will also facilitate our research in the future.
Finally, the use of radiomic features of the hippocampus alone
are not enough to fully describe AD progression; combining mark-
ers from other brain regions will help identify robust and repro-
ducible biomarkers for clinical applications [4,7,66–68].
6. Conclusion

This work represents a large and interdisciplinary effort to
develop and validate AD neuroimaging biomarkers. Utilizing large
multisite neuroimaging datasets and radiomics profiles, the pre-
sent study developed novel biomarkers that, to the best of our
knowledge, are the first personalized, reproducible and scientifi-
cally interpretable biomarkers for AD. This systematic study high-
lights the presence of hippocampal textural abnormalities in AD
and the possibility that textures can serve as neuroimaging
biomarkers for AD for further clinical applications.
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